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Abstract  

The biggest challenge in the development of gesture-
based user interfaces is the creation of a gesture 
recognizer. Existing approaches to support high-level 
recognition of glyphs require a lot of effort from 
developers, are error prone, and suffer from low 
recognition rates. We propose a tool that generates a 
recognizer for hand-drawn glyphs from one example. Our 
tool uses the output of a basic shape recognizer as input to 
the glyph recognition. The recognizer can be integrated 
into an app by adding only four lines of code. By reducing 
the development effort required, the approach makes it 
possible for many touch-interaction apps to take 
advantage of hand-drawn content. We demonstrate the 
tools effectiveness with two examples. Furthermore, our 
within-subject evaluation shows that programmers with 
no knowledge of gesture recognition can generate a 
recognizer and integrate it into an app more quickly and 
easily than manually coding recognition rules, and that 
the generated recognizer is more accurate than a manually 
coded one. 
Keywords: Gesture recognition; gesture based interaction. 

1 Introduction 
Touch interfaces on phones and tablets naturally afford 
hand drawn input. Functional gestures such as swipe and 
zoom are natively supported and widely used, yet there 
are only a few apps that leverage hand-drawing as a form 
of input. In part this is because such input is of little use 
unless the computer can understand its meaning. This 
understanding is reliant on robust recognizers, which are 
difficult to program. As a result, it is currently too much 
work for general programmers to add hand-drawn input 
to their apps. 

The field of ink and gesture recognition has developed 
quickly over recent years. There are now a number of 
easy-to-implement (Wobbrock et al., 2007) and 
componentized solutions (Chang et al., 2012; Lü and Li, 
2012) for gesture or single stroke recognition. However, 

there are no similarly simple solutions to creating and 
using high-level recognizers for glyphs comprised of 
several strokes. 
A bottom-up approach to recognition attempts to 
recognize individual ink segments and then progressively 
group these into larger and more complex glyphs, thus 
developing an overall semantic understanding of the 
diagram. Our recognizer performs high-level recognition 
where glyphs comprised of more than one basic shape 
(i.e. line, circle, rectangle etc.) are identified. Glyph 
recognition is one of the last steps in a bottom-up 
recognition process, coming after segmentation/grouping 
and basic shape recognition steps have been completed. 

High-level recognizers can be built via three main 
approaches: textual, example-based and hybrid (Johnson 
et al., 2009). The frequently used textual approach 
involves describing the glyphs using rules. The formalism 
that is generally used for this is sketch grammars, which 
specify the rules for combining symbols using spatial and 
temporal relations (Costagliola et al., 2005a; Hammond 
and Davis, 2005). Conventionally, the textual approach 
requires the manual specification of rules for each glyph 
using the grammar. The recognizer uses these 
descriptions to classify new glyphs. Defining glyphs in 
this manner is both time-consuming and error-prone. 
Additionally, it takes time for the developer to become 
familiar with sketch grammars. 

Example-based approaches offer an alternative way to 
build recognizers. Instead of specifying glyphs through 
rules, the developer provides example glyphs; from these 
examples rules are automatically deduced and a ready-to-
use recognizer is produced. Thus, this approach can 
generate a recognizer quickly without code or knowledge 
of a grammar, through demonstration. This saves 
developers of gesture-based interfaces time whilst adding 
flexibility and robustness. One of our study participants 
described it thus:  

“no coding, no thinking, very easy” 

In this project we demonstrate how exemplar-based 
high-level recognition can be drastically simplified by 1) 
requiring only a single exemplar glyph and 2) making it 
easy to add a glyph recognizer to an application. The 
glyph is drawn in our recognizer generator tool. This 
generator includes a set of features that measure spatial 
relationships of the strokes in the exemplar to produce a 
recognition matrix. The recognition matrix is used to 
recognize new glyphs. The application developer simply 
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passes the raw sketch data to the recognizer through an 
API and the recognition result is returned to the program. 
Adding the recognizer to an app only requires loading the 
library and calling the recognizer. 

To show the feasibility of this approach we have 
developed two example apps (Figure 1), which include all 
the core spatial relationships of hand-drawn glyphs in 
general. They also demonstrate how hand-drawn input 
could be used: one app generates HTML, the other is a 
game. 
 

 

 a) Tic-tac-toe  

 
b) Web form glyphs 

Figure 1. Glyphs recognized by each of our apps 

The contributions of this project are: 
• an approach that can generate a high-level glyph 

recognizer from one example per glyph,  
• specifications of three spatial features with 

evidence indicating they are sufficient to 
recognize a range of multi-stroke hand-drawn 
glyphs,  

• a simple API for app programmers to integrate 
the recognizer into their program, 

• an evaluation illustrating the efficiency and 
accuracy of the proposed approach. 

2 Related Work 
The value of recognition lies in being able to use the 
interpretation of a sketch in intelligent ways. Previous 
work in high-level sketch understanding, describing the 
way sketched glyphs are drawn and the relationships 
between glyphs, falls into three categories (Johnson et al., 
2009): textual descriptions (grammars), exemplar-based 
approaches, and hybrid approaches. 

Grammars (Costagliola et al., 2005b; Costagliola et 
al., 2005a; Hammond and Davis, 2005; Mas et al., 2005; 
Hammond and Davis, 2007; Brieler and Minas, 2010; 
Mas et al., 2010) commonly use a sketch description 
language to define all glyphs of a domain. Recognizers 
are then automatically generated using these descriptions. 
The language can be used to define complex glyphs, often 

in a hierarchical manner, using definitions of primitive 
shapes to describe more complex glyphs. Editing 
operations or gestures, relationships, and various 
constraints can also be defined. The drawback of this 
approach is that defining the grammar itself is a 
cumbersome task with a large potential for error. 

There are several example-based recognition systems 
that support high-level understanding of diagrams 
(Plimmer and Apperley, 2003; Sharon and Panne, 2006; 
Avola et al., 2008). Much of this work stems from 
Rubine’s (1991) early work in example-based gesture 
recognition. Rules for determining semantics are 
extracted from sketched examples by measuring various 
features. The probability of a candidate glyph matching 
an example is then calculated. The choice of features and 
the available sketched example set are central to the 
success of these approaches. Often these high-level 
recognizers are for only one domain (Avola et al., 2008) 
or can require 20+ examples per class (Sharon and Panne, 
2006). In contrast our goal is to support multiple domains 
with only one example per class. 

There are also hybrid approaches which mix textual 
and example based approaches. Shilman et al. (Shilman et 
al., 2001) generate recognizers using textual descriptions, 
but use examples to generate a statistical model of the 
thresholds representing relationships between glyphs. 
Hammond et al. (Hammond and Davis, 2006) require a 
textual description of a shape which is either written by 
the developer or can be generated automatically. The 
description is checked using automatically generated 
near-miss examples and the developer provides feedback 
as to whether the example is positive or negative. 

Both textual and hybrid approaches require textual 
descriptions of diagrams. The manual specification of 
each glyph in a domain is both time-consuming and error-
prone. On the other hand, the example-based method has 
the unique potential to permit swift generation of 
relatively robust high-level sketch recognizers in a non-
tedious manner. Thus, we decided to use the same 
approach for our tool. 

Gesture coder (Lü and Li, 2012) is a tool that allows 
developers to generate example-based multi-touch 
gesture recognizers. The system uses a state machine 
approach for gesture recognition and generates developer-
modifiable code by learning from examples. Gesture 
coder’s state machines are used to handle and distinguish 
between different types of finger touches (swipe, pinch, 
pan etc.). In contrast to the previously discussed 
recognizers, gesture coder learns from demonstration 
(using gesture trajectories, distance between gestures, 
global gesture attributes etc.) and generates code for 
recognition automatically rather than asking developers to 
describe recognition using sketch sentences/descriptions. 
Reported recognition rates are about 65% for 6 or more 
classes. The user evaluation of Gesture Coder compared 
programmers integrating it into an app with coding the 
recognizer from the sketch primitives, an almost 
impossible task for the non-expert participants to 
complete within the timeframe of a study. Unsurprisingly, 
many gave up and some produced only a simple partial 
solution.  

The $-Family (Wobbrock et al., 2007; Anthony and 
Wobbrock, 2012; Vatavu et al., 2012) recognizers are 



designed for simple, fast and accurate gesture 
recognition. The $P and $N versions are able to recognize 
multi-stroke gestures. The code required is minimal and 
pseudocode is provided to assist developers. 

Gesture Coder and the $-Family recognizers are 
specifically for multi-touch/pen functional gestures rather 
than glyph recognition. Glyphs are typically more 
detailed in nature than a multi-touch functional gesture, 
they are not always ordered by time, and require high-
level recognition to piece each bit together to interpret the 
glyph as a whole. Multi-touch gestures can be easily 
grouped according to time, i.e. the gesture is performed 
within a certain time period and only one gesture is on the 
canvas at one time. For diagramming, recognizers must 
be able to handle many glyphs on the canvas at once. 

In summary, there has been no approach so far that 
can build robust high-level glyph recognizers with little 
development effort. Existing approaches suffer from a 
need to manually specify the rules in a text-based 
grammar, or are restricted to a single stroke or gestures. 

3 Our Approach 
Glyphs in visual languages rely on the shapes of the 
individual strokes and spatial relationships between these 
strokes. In their seminal work on topical spatial 
relationships, Egenhofer and Fanzosa (1991) define the 
spatial relationships between a pair of ellipse shaped 
regions as having the following possible conditions: 
disjointed, touching, equal, containment, covers, 
overlaps. Other work (1990) extends the definition to 
include simple lines interspersed with the ellipses. Our 
case is different in that, rather than regions, glyphs are 
represented by a number of non-straight lines. In addition, 
it is difficult to draw precisely so we must cater for some 
fuzziness. We simplify the abovementioned set of 
conditions to four that are sufficient to effectively 
recognize a range of hand-drawn glyphs: 

• Contains 
• Intersects 
• Adjacent 
• Disjointed 

Egenhofer and Fanzosa (1991) go on to show how 
these conditions can be represented in a binary matrix to 
describe a particular spatial arrangement of regions. 

Whereas Egenhofer and Fanzosa considered only 
ellipses and lines, this project deals with a far wider set of 
basic strokes. For the single-stroke recognition we rely on 
RATA.Gesture (Chang et al., 2012), it generates a stroke 
recognizer from a few examples. The results of the 
gesture recognizer are then used in our tool to build the 
high-level glyph recognizer.  

At the core of all gesture recognizers are features. We 
have devised three features, one each for the conditions to 
be recognized. To build a recognizer we also borrow from 
Egenhofer and Fanzosa (1991) the idea to use a binary 
matrix to represent which conditions exist in the current 
drawing and which do not. How this recognizer is 
constructed is described in Section 4. Section 5 describes 
how the recognizer can be used by the application 
programmer via an API. This API also makes it possible 
for developers to test for features in a sketch manually. 

In Section 6 we describe two proof-of-concept apps. 
Each requires all spatial features to be recognized and 
results in a different action when drawing is completed. 
These apps are used to test the recognizers’ accuracy. 
Finally, to ensure that the tool is usable by app 
programmers and is more efficient than hand-coding the 
spatial relationships, we conducted a comparative study 
where student programmers performed two tasks: one 
task using this tool, and the other task coding the rules 
manually using the three proposed spatial features. This is 
a fairer evaluation than in (Lü and Li, 2012) as functions 
to detect spatial relationship features are made available 
to the participants in our study. 

4 Recognizer Generation 
This section describes how our approach can be used to 
generate a recognizer from one hand-drawn exemplar. 
We use the example of a combo box to explain each 
concept. 

4.1 Features 
Using knowledge of spatial properties from Egenhofer 
and Fanzosa (1991), we identified three key 
distinguishing features to include in our recognizer: 
intersection, containment, and adjacency. If none of these 
features are present, then the strokes are disjointed. These 
features are depicted in Figure 2 for the combo box 
example. 

 

  
a) Intersection b) Adjacency 

 
c) Containment 

Figure 2. Features of a combo box 

 
Intersection occurs when two strokes cross at any 

point. This does not include self-intersections or strokes 
that are close but not intersecting. 

Containment is when the bounding box (axis aligned) 
of one stroke is inside another stroke’s bounding box. If 
the inner bounding box is outside of the outer bounding 
box at any point then it is not considered containment – 
this would be intersection or adjacency. Note that this 
feature is not symmetric, e.g. the arrow of the combo box 
in Figure 2c is contained in the textbox but the textbox is 
not contained in the arrow.  

Adjacency occurs when two strokes are intersecting 
or horizontally or vertically adjacent. Horizontal and 
vertical adjacency is calculated using the bounding boxes 
(axis aligned) of the strokes. Consider horizontal 
adjacency. First the maximum width of the two bounding 
boxes is found, which is used to calculate a threshold for 
“closeness”. “Closeness” is calculated as a proportion of 



the maximum width or height, e.g. for horizontal 
adjacency this is set to 50% of the maximum width, 
which was determined by informal testing. If the distance 
between the bounding boxes’ left or right sides are within 
the threshold, they are considered horizontally “close”. 
Then a similar calculation is completed to find whether 
the bounding boxes sit on the same horizontal line by 
checking if the top of one box is “close” to the middle of 
the other. The threshold used here is 30% of the 
maximum bounding box height. Vertical adjacency is 
calculated in a similar way except that it considers the top 
and bottom of the boxes to determine vertical “closeness” 
and the left and right sides to determine if they are on the 
same vertical line (thresholds for “closeness” used here 
are 10% of the maximum bounding box height and 30% 
of the maximum width respectively determined via 
informal testing). 

4.2 Matrices 
A matrix for each of the above features is derived to 
represent the relationships that exist in a multi-stroke 
glyph (e.g. Figure 3). These matrices encode spatial 
relationships between all possible pairs of strokes. Each 
matrix has size n x n, where n is the number of single-
strokes in the glyph. In Figure 3 the first matrix 
represents the intersections that exist between strokes in 
the glyph, the second is for containment relationships and 
the third for adjacency. The relationships are represented 
using Boolean values, where ‘1’ indicates that the 
relationship exists between two strokes. The name of 
each single stroke is shown in the first row of the matrix; 
these are ordered alphabetically as recognition is 
independent of the order in which strokes are drawn. In 
Figure 3, the highlighted cell of the intersection matrix 
shows that there is an intersection between the textbox 
and divider strokes, as illustrated in the figure. The 
highlighted cell in the containment matrix shows that the 
arrow is contained by the textbox. For the adjacency 
matrix the highlighted relationship shows that the divider 
is adjacent to the arrow. Overall, for the combo box there 
are more adjacency relationships than intersection or 
containment. 

 
      !combobox             #Glyph name 
      Textbox-Arrow-Divider #Single strokes  
Textbox   
Arrow 
Divider 

  0,    0,    1,  
  0,    0,    0,  
  1,    0,    0, 

#Intersection matrix 

 
      # 
      Textbox-Arrow-Divider 
Textbox   
Arrow 
Divider 

  0,    1,    0, 
  0,    0,    0, 
  0,    0,    0, 

#Containment matrix 

 
      # 
      Textbox-Arrow-Divider 
Textbox   
Arrow 
Divider 

  0,    1,    1, 
  1,    0,    1, 
  1,    1,    0, 

#Adjacency matrix 
 

Figure 3. Feature matrices for a combo box. The 
highlighted matrix cells correspond to the 

relationships shown in the example sketches. 

Recognition must be independent of stroke drawing 
order. For example, the strokes in Figure 1 could be 
added to a canvas in any order. To achieve drawing order 

independence without computing all permutations of 
drawing order, we sort the strokes in both the recognition 
matrices and those on the canvas into alphabetical order 
by their single stroke label.  

The recognizer must also recognize glyphs that are a 
superset of other glyphs, e.g. the textbox in Figure 1 is a 
valid glyph in its own right and would usually be drawn 
before the other parts of the combo box. The recognizer 
must therefore consider all previous strokes regardless of 
their recognition state. The recognizer tries to recognize 
from the glyph with the largest to smallest number of 
component strokes. This is computationally expensive so 
we provide two recognizer modes: instant (only considers 
strokes that are not already recognized as a part of a 
glyph) and iterative (considers all strokes).  

Developers create a recognizer by drawing one 
example of each glyph they want to recognize in our tool. 
This requires minimal effort and no understanding of 
recognition techniques. They may provide more than one 
example glyph if required. The feature matrices are 
generated automatically using the examples and stored in 
a recognizer file. This recognizer can then be integrated 
into an app. 

5 Recognizer Integration via the API 
Once the recognizer has been generated, it can be loaded 
into an app to identify newly drawn glyphs using the code 
shown in Figure 4. 
  
Helper recogHelper = new Helper(this);            (1) 
recogHelper.loadModelFile(RATA_SSR_FILE);     (2) 
recogHelper.loadFile(“UI.txt”);                        (3) 
   … 
Void onTraceRecognized(trace){ 
 String result=recogHelper.recognize(trace);(4) 
} 

Figure 4. Code required to integrate a recognizer  

To use the generated recognizer in an app a Helper 
object is created (Figure 4(1)). Next, the single-stroke 
recognizer (Figure 4(2)) and the generated recognizer 
matrix file (Figure 4(3)) are loaded. With the set-up phase 
complete, new glyphs can be passed to the recognizer to 
be identified as they are drawn with the 
onTraceRecognized() function (this function is triggered 
when a new stroke is drawn). The recognize() function 
(Figure 4(4)) executes the recognition process. This 
processing involves two steps: 

1)  recognizing each stroke individually using the 
single stroke recognizer (Chang et al., 2012), 
and  

2) deducing spatial relationships between the 
recognized strokes using the generated 
recognizer. 

With the results of the single stroke recognizer a 
matrix can be generated from the newly drawn strokes. 
The recognition system considers at most the n most 
recent strokes, where n is the number of the strokes that 
make up the largest glyph in the domain. This matrix is 
compared against the loaded matrices (Figure 4(3)) for a 
match. To optimize performance, the comparison is 
skipped if there is no glyph in the domain which is made 



up of the same number of strokes as the recognizer matrix 
generated from user-drawn strokes. In case of a match, 
the recognition result is returned to the developer’s app 
through the onTracesRecognized() callback method for 
them to process.  

For the more advanced developer we have exposed 
further recognition preferences that can be set through the 
Helper object. The developer may choose which features 
are considered during recognition; by default the 
recognizer uses all three. Additionally, the developer may 
choose to enable the instant recognition mode; by default 
the iterative recognition that considers all strokes is used.  

6 Proof of Concept 
We have implemented two example apps as proof of 
concept: sketching user interfaces and tic-tac-toe. All 
three spatial relationships are represented in both 
domains. The different domains also illustrate different 
post-processing of the recognition results. 

A survey was conducted to observe how people draw 
within these domains; this aided us in identifying the 
form of the glyphs required for recognition. Each 
participant of the survey was asked to draw: a typical web 
form, and a tic-tac-toe playing board with a circle or cross 
in each grid. Participants used several user interface 
glyphs such as textboxes, combo boxes, radio buttons, 
checkboxes, buttons and labels for the web form. The 
most common form of glyphs drawn is shown in Figure 
1b. All participants drew the tic-tac-toe playing board as 
shown in Figure 1a. 

Using the results of our survey we generated 
recognizers for each of the glyphs in the domains. This 
involved drawing one example of each glyph with our 
recognizer generation tool. For glyphs that could be 
drawn in more than one way, i.e. combo boxes, an 
example for each variant was drawn. 

The recognizers were integrated into an app for each 
domain. Once the glyphs are recognized within the app, 
post processing can be performed to take advantage of the 
recognition results. For the user interface domain we used 
the sketches to generate corresponding HTML code. We 
used the tic-tac-toe recognizer to create a game which 
involves turn taking and informs the users when someone 
has won. It also uses the recognition to perform error 
checking, such as ensuring there is only one symbol per 
cell and a symbol does not overlap other cells. 

6.1 Recognizer accuracy 
We also evaluated the accuracy of the recognizers 
(calculated as the number of correctly classified glyphs / 
total number of glyphs) in our proof of concept apps. To 
do this we collected sketches from nine people where 
they were asked to draw using the two apps. For the tic-
tac-toe app participants played five games of tic-tac-toe 
against themselves. For the user interface app participants 
drew eight of each web form component, (see Figure 1b). 
Some participants drew slightly more or less than the 
number specified depending on the time available. The 
number of glyphs collected for each app and recognition 
results are shown in Table 1. 

The recognition results are good, with the tic-tac-toe 
app reaching an almost perfect recognition rate, and the 

user interface recognition achieving 85.9% accuracy. The 
recognizer for the user interface domain had more glyphs 
to interpret than tic-tac-toe which may account for the 
difference in accuracy. 
 
 # 

Glyphs 
% total 
correct  

% correct 
(RATA) 

% correct 
(glyph rec) 

User 
Interface 496 85.9 94.5 91.3 

Tic-tac-toe 435 99.5 100.0 99.5 

Table 1. Recognition accuracy of each app. 

The last two columns of Table 1 show the source of 
errors made, with the percentage of glyphs that were 
correctly classified by RATA (the single-stroke 
recognizer) and by the generated glyph recognizer. The 
glyph recognizer is responsible for a larger proportion of 
the errors than RATA, particularly for the user interface 
domain. On closer inspection we found two main sources 
of misclassification for user interfaces: 45% of the 
comboboxes (type 1 in Figure 1b) were misclassified; and 
32% of the radiobuttons were misclassified. The 
combobox was often identified as a textbox; we believe 
this is because the inner line was not found to intersect 
with the outer box. The radiobutton was commonly 
classified as a label, most likely because the circles were 
not found to be adjacent to the label. This indicates some 
room for improvement for our glyph recognition strategy, 
which could include allowing for more fuzzy conditions 
to be applied, especially when determining thresholds for 
“closeness”. It also highlights the need for extra measures 
to be applied to minimise the effect of errors from 
previous recognition steps, RATA in this case, on glyph 
recognition. These issues are discussed further in Section 
8. 

7 User Study 
The goal of the user study was twofold: to test whether 
ordinary programmers could generate and integrate the 
recognizer into an app; and to test if this is more efficient 
in terms of time and accuracy than hard-coding a 
recognizer for the chosen app. The task was to create a 
high-level recognizer for a non-trivial domain. Ten 4th-
year students who were well-versed in Java programming 
were recruited. 

In order to make the comparative evaluation as fair as 
possible, our evaluation makes two important differences 
from the study by Lü and Li (2012), who performed a 
similar evaluation for multi-touch functional gesture 
recognition. First, we made sure all participants were 
familiar with the domain. We chose the UI domain as all 
of the participants had previous experience with UI 
development. Second, we provided the participants with 
adequate technological support when hard-coding a 
recognizer. That is, the participants had access to our 
features for detecting spatial relationships. There are a 
number of feature libraries publically available that an 
application programmer could employ, so realistically 
developers would not code features. 



7.1 Methodology 
We conducted pilot tests with three participants to 
determine whether the instructions and tasks were 
appropriate. This was followed by individual sessions 
during which each of the participants worked alone. We 
collected information on participants’ prior experience 
and opinions about the tasks through a questionnaire. 

Each participant had to generate two recognizers for 
the web UI domain: one generated using our tool (Tool) 
and the other created through the hard-coding approach 
(Hard-code). The glyphs they focused on are those shown 
in Figure 1b. Participants were given a maximum of 30 
minutes for each task. For both the tasks, participants 
were provided with the User Interface app which 
generated HTML code (on one half of the screen) for the 
web UI glyphs sketched (on the other half of the screen). 
The bits of the source code responsible for recognition 
were omitted from the app, but where they should be 
added was clearly marked with comments. The 
participants followed the provided instructions to work 
through both parts. To aid with the hard-coding task, we 
particularly pointed out the functions to check for spatial 
relationships (intersection, containment and adjacency) 
between a pair of strokes, and also ensured they 
understood how to use these functions to hard-code a 
high-level recognizer. 

In the questionnaire’s pre-task section participants 
rated their familiarity with: touch interfaces, sketching 
apps on touch-screen devices, Java programming, 
Android programming and programming of sketch 
recognizers. In the two post-task sections of the 
questionnaire, participants were asked to rate task 
comprehension, ease of using the approach to generate a 
recognizer, perceived recognizer accuracy and 
enjoyment. All these ratings were performed using a five-
point Likert scale. In the last section of the questionnaire, 
participants were asked to rank the two approaches for 
generating recognizers for ease of use and accuracy; they 
were also asked to provide an overall ranking. Lastly, 
they were asked to comment on what they liked/disliked 
about the two approaches considered.  

Half the participants were asked to generate a 
recognizer using our tool first whereas the other half were 
asked to create one using the hard-coding approach first, 
to balance any order effects. Before starting the tasks, 
participants were given a two minute demonstration of 
how to use our tool to generate a recognizer by example, 
and asked to complete the first part of the questionnaire. 
In addition, we provided a hand-out containing 
instructions for both the tasks. The participants were 
asked to fill out a post-task section of the questionnaire 
following each completion of each task. Participants 
performed the tasks on an ASUS tablet running Android 
4.2.1 and a DELL core i5 PC running the Eclipse IDE 
(with ADT installed) on Windows 7. 

After the participants implemented the recognisers in 
the apps, they were asked to run them on the Android 
tablet and test the recognition. They were encouraged to 
stress test the recognizer by varying the order in which 
the glyphs were sketched (the glyphs tested are the same 
as in Figure 1b). At the end of the evaluation, the 
participants were asked to complete the rest of the 

questionnaire, including the open-ended questions and 
comments. We used each participant’s test data to 
measure the accuracy of the recognizers they produced. A 
Wilcoxon Signed Rank Test was used to test for 
significant differences in the results (as they were not 
normally distributed), unless stated otherwise. 

7.2 Results 
Participant’s self-ratings of existing skills and knowledge 
were recorded on a 1-5 scale, with 5 being “expert”. All 
participants rated themselves as 5 regarding touch 
interface use, but the mean was 3.2 for using sketching 
apps on touch devices. For programming skills, all rated 
Java programming as 5, with the Android programming 
mean 4.3 and gesture recognition programming mean just 
2, indicating none had experience in coding recognizers. 

Table 2 shows the results of the questionnaire 
particularly for questions asked about both methods of 
recognizer creation. 

Participants reported positively on task comprehension 
(Table 2 Q1) for both tasks (Tool: M = 4.5 SD = 0.71, 
Hard-code: M = 4.4 SD = 0.70). All participants either 
completed the tasks or coded till their time expired. On 
average participants took 11.60 minutes to complete the 
Tool task (SD = 3.13), whereas hard-coding took an 
average of 27.40 minutes (SD = 3.60). A paired t-test 
showed that there was a significant difference in the time 
that participants took to generate and integrate a 
recognizer (t= -9.488, p < 0.001, Cohen’s d = -3.00). 

Participants wrote 10 lines of code on average when 
they used our tool and API; when hard-coding 
participants added an average of 45 lines. Participant 2 
produced one of the better results, shown in Figure 5 and 
Figure 6. The code in Figure 6 shows the main 
recognition method doRecognition(), which gets three 
strokes as arguments. The method is dominated by many 
conditional statements that consider the different 
orderings in which the strokes making up a glyph are 
given. For example, when recognizing a combo box in 
the first lines of the method, each of the given 
StrokeEvents could contain the text box that needs to be 
recognized as part of a combo box. When hard-coding, 
many participants did not complete the recognizer as they 
did not include code to handle all permutations of strokes 
that a glyph could be made up of. This was either 

 
Question Method SD D N A SA 
Q1. I 
understood the 
task 

Tool   1 3 6 
HC   1 4 5 

Q2. Using the 
tool/hardcoding 
was easy 

Tool    7 3 
HC  2 2 6  

Q3. I enjoyed 
using the 
tool/hardcoding 

Tool   1 4 5 
HC 2  1 5 2 

Q4. The 
recognition was 
accurate 

Tool    5 5 
HC  2 3 3 2 

Table 2. Results of comparative questionnaire (HC = 
hard-code) 



because of time restrictions or they did not consider these 
cases. 

Participants found generating a recognizer by example 
using our tool to be very easy (M = 4.4, SD = 0.52). 
Integrating the recognizer with the app was found to be 
equally easy. The participants found using our tool (Table 
2 Q2) significantly easier (Z=-2.251, p = 0.024, r = -0.50) 
than doing the same by hard-coding (Tool: M = 4.3 SD = 
0.48, Hard-code: M = 3.4 SD = 0.84). Also, the 
participants found our tool to be more enjoyable (Table 2 

 Q3) than hard-coding (Tool: M = 4.4 SD = 0.70, Hard-
code: M = 3.5 SD = 1.43), although this was not 
statistically significant (Z=-1.476, p=0.14, r = -0.33). 

Since our tool considers all possible permutations in 
which the strokes of a diagram can be drawn, participants 
rated it as significantly more accurate (Table 2 Q4) than 
the hard-coded recognizer (Z=-2.232, p=0.026, r=-
0.50,Tool: M=4.5 SD=0.53, Hard-code: M=3.4 
SD=1.07). 

Helper msrHelper = new Helper(this);  
msrHelper.loadModelFile(RATA_SSR_FILE);  
msrHelper.loadFile(RATA_MSR_FILE); 
 
void onTraceRecognized(TraceEvent stroke, String result) {  
 msrHelper.recognize(stroke);  
} 
void onTracesRecognized(RecogResult r) {  
 String msrResult = r.getResult(); 
} 

Figure 5. Participant 2’s code using our tool 

 
 
 
// TODO: Implement the method. 
// In this method:  
// 1) Recognize 2-stroke components i.e. Button, Checkbox and Radiobutton. 
// 2) Recognize the 3-stroke component i.e. Combobox. 
 
private String doRecognition(StrokeEvent strokeEvent1,StrokeEvent strokeEvent2,StrokeEvent 
strokeEvent3){ 

if(strokeEvent3.exists() == true){ 
 if(strokeEvent1.isRecognisedResult("Textbox") && strokeEvent2.isRecognisedResult("Divider")  

         && strokeEvent3.isRecognisedResult("Arrow") && isContained(strokeEvent1, strokeEvent3) 
         && isIntersecting(strokeEvent1, strokeEvent2) && isAdjacent(strokeEvent2, strokeEvent3)) 

    return "combobox"; 
 if(strokeEvent2.isRecognisedResult("Textbox") && strokeEvent1.isRecognised... 
    return "combobox"; 
 if(strokeEvent2.isRecognisedResult("Textbox") && strokeEvent3.isRecognised... 
    return "combobox"; 
 if(strokeEvent3.isRecognisedResult("Textbox") && strokeEvent1.isRecognised... 
    return "combobox"; 
 if(strokeEvent3.isRecognisedResult("Textbox") && strokeEvent2.isRecognised...   
    return "combobox"; 
 if(strokeEvent1.isRecognisedResult("Textbox") && strokeEvent3.isRecognised... 
    return "combobox"; 
} 
if((isContained(strokeEvent1, strokeEvent2) && (strokeEvent1.isRecognisedResult("Textbox")  

      && strokeEvent2.isRecognisedResult("Label")) || (isContained(strokeEvent2, strokeEvent1) && 
      strokeEvent2.isRecognisedResult("Textbox") && strokeEvent1.isRecognisedResult("Label")))){ 

   return "Button"; 
} 
if(isAdjacent(strokeEvent1, strokeEvent2)){ 
   if((strokeEvent1.isRecognisedResult("Circle") && strokeEvent2.isRecognisedResult("Label"))   

         || (strokeEvent2.isRecognisedResult("Circle") && 
strokeEvent1.isRecognisedResult("Label")))  
         return "radiobutton"; 

   else if((strokeEvent1.isRecognisedResult("Textbox") && 
strokeEvent2.isRecognisedResult("Label"))  
         || (strokeEvent2.isRecognisedResult("Textbox") && 
strokeEvent1.isRecognisedResult("Label")))  
         return "checkbox"; 

} 
return "NO_MATCH"; 

} 
   

public boolean isIntersecting(StrokeEvent strokeEvent1, StrokeEvent strokeEvent2){ 
 …  code was provided } 

public boolean isContained(StrokeEvent strokeEvent1, StrokeEvent strokeEvent2){ 
 …  code was provided } 

public boolean isAdjacent(StrokeEvent strokeEvent1, StrokeEvent strokeEvent2){ 
 …  code was provided  } 

Figure 6. Participant 2s Hard-coded implementation (note: many lines truncated as indicated with …) 



For the same reason participants agreed that hard-coding 
a recognizer was tedious (M = 3.8 SD = 0.92). Typical 
participant comments for hard-coding were “need to 
spend too much time”, “less flexible” and “very tedious”. 

The accuracy of the recognizers built during the 
evaluation was calculated by the number of correctly 
recognized UI glyphs drawn by the participants / total 
number of glyphs drawn by the participants. The 
accuracy for recognizers generated using our tool was 
100% (SD = 0), whereas the mean accuracy for 
recognizers generated through hard-coding was 75.10% 
(SD = 35.77). 

Each and every participant rated our tool better than 
hard-coding for accuracy as well as ease of use. The 
overall ranking also showed our tool to be their preferred 
approach. This positive feedback was further reflected in 
the open-ended comments with answers such as: “the tool 
aspires to the ideal of a recognition library by removing 
the need to do any stroke processing”, “no coding, no 
thinking, very easy”, “easy for lots of diagrams at once”. 

8 Discussion 
The goal of this project is to provide a tool for generating 
high-level recognizers and an API to allow developers to 
easily integrate these recognizers into their apps. Our 
evaluation shows that developers unfamiliar with building 
recognizers are able to quickly generate a high-level 
recognizer with accurate results. The study participants 
were unfamiliar with sketch recognition, yet they reported 
the tool was easy as well as enjoyable to use. It was also 
considerably quicker: generating a recognizer using the 
tool took 12 minutes, as opposed to 27 minutes using the 
spatial features we provided to hard-code a recognizer. In 
addition, the recognizer generated using the tool was 
superior to its counterpart in terms of accuracy. In a real 
world scenario we would expect the diagrams to be larger 
in terms of number of strokes. In such a situation the 
benefits of using our tool (versus hard-coding) would 
become even more apparent. 

The spatial features of glyphs we have considered, 
although not exhaustive, have produced good results for 
the user interface and tic-tac-toe domain. In the future we 
plan to extend these to consider the orientation 
relationship between strokes, e.g. where a line attached to 
the top or bottom of a circle has a different meaning. In 
many cases, for example node-and-edge diagrams, this is 
not important. However, there are situations where it may 
be appropriate to make such differences. In addition, our 
recognizer currently uses features that return a Boolean 
value (either the feature is present for the given strokes or 
it is not) and corresponding recognition matrices. This 
simple approach has worked well for user interface and 
tic-tac-toe domains. However, it could be expanded to 
provide a continuous measure for domains such as set 
diagrams, e.g. “50% overlap”, or could include machine 
learning classifiers such as those that other recognizers 
employ. 

The use of any high-level recognizer relies on the 
results of the recognition steps that precede the current 
step in the process. A bottom-up approach to recognition 
begins by recognizing single ink segments and then 
progressively groups these into more complex glyphs. 
The ultimate goal is to develop an overall semantic 

understanding of the diagram. Our recognizer performs 
high-level recognition where glyphs comprising of more 
than one basic shape are identified; this is one of the last 
steps in the recognition process. To account for the 
preceding recognition steps we have used a single-stroke 
recognizer (Chang et al., 2012). In future work we intend 
to investigate ways of minimising the effect of errors 
from earlier stages of recognition on the later stages such 
as glyph recognition. 

We are yet to optimise the runtime performance of the 
recognizer. With larger sketches it would benefit from 
partitioning the canvas using techniques such as (Moran 
et al., 1997). 

There are a number of single-stroke recognizers 
available. The one we selected (Chang et al., 2012), has 
the advantage of being example-based, requiring no 
coding on the part of the programmer and having a simple 
API. Thus it meets our goal of a no-coding solution to 
glyph recognition. We have hidden the API of (Chang et 
al., 2012) inside our own recognizer, but this could easily 
be exposed to app programmers if this was deemed 
helpful. 

The sample apps that we developed show how our tool 
can be applied in different domains. The UI tool converts 
the sketch to HTML code that can be readily rendered in 
a browser. This is in the spirit of many early sketch tools 
such as (Landay, 1995). Tic-tac-toe is an example of a 
mini game app. There are many possible mini games that 
could be created using our tool. 

9 Conclusion 
We presented a novel approach that allows software 
developers to create a high-level recognizer from one 
example glyph, and integrate it into their app with as little 
as four lines of code. The effectiveness of this tool has 
been demonstrated in two apps employing recognizers 
built using our tool and API. The user study shows that 
developers unfamiliar with creating recognizers are able 
to use the approach to generate accurate high-level 
recognizers very easily, and are satisfied with the 
usability of the tool. 
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